some mitochondria were found to be arranged in a disorderly manner in the heart muscle. A marked alteration of mitochondria in the heart was observed 7 min after hypoxia. From a population of 780 mitochondria, 30% had greatly increased in size and were swollen, 4% of them were small bodies or degenerated mitochondria, and 25% had fused together. 1% of the sample was huge mitochondria with floating cristae or mitochondria forming an elongated giant structure of about 6 to 7 sarcomere in length (Figure 1). Mitochondria in the early stages of fusion formed a 'giant structure' of different shapes as illustrated in Figure 2 and 3. Narrow channels or bridges were seen along the border of the adjoining mitochondria; the interior parts of the organelles had already been fused in some instances. This phenomenon is prob-

Fig. 1, 2 and 3. Electron micrographs were taken from right ventricles of isolated rat heart 7 min after hypoxia illustrating fusion of mitochondria. \times 26,000.

Fig. 1. A rod shaped mitochondrion ran parallel to the course of the myofibrils through 6 or 7 sarcomeres.

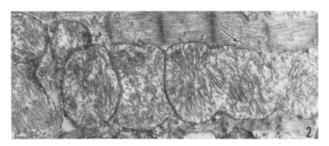


Fig. 2. A mitochondrion ran through 3 sarcomeres (arrow).

ably due to the inherent property of mitochondrial structural protein to reform hydrophobic surfaces after rupture of the mitochondrial membrane. Some of the mitochondria contained clear matrices as well as disrupted cristae. The formation of vacuoles in the myoplasm was occasionally observed.

Fig. 3. Mitochondria were in different stages of fusion to form giant structures of different shapes.

Zusammenfassung. Herzen gesunder, erwachsener Ratten wurden mit Krebs-Henseleit-Bikarbonatlösung durchströmt (95% O₂:5% CO₂). Bei künstlich herbeigeführter Hypoxie (95% N₂:5% CO₂) erschienen die Herzmitochondrien innerhalb von 7 min bedeutend vergrössert und zu 25% miteinander verschmolzen.

C. N. Sun⁵, N. S. Dhalla⁶ and R. E. Olson

St. Louis University School of Medicine, St. Louis (Missouri 63104, USA), 5 March 1969.

- ⁴ The authors wish to thank Dr. Suzanne Sauressig for translating the summary into German.
- ⁵ Present address: Department of Pathology, Baylor University College of Medicine, Houston (Texas 77025, USA).
- ⁶ Present address: Department of Physiology, University of Manitoba, Winnipeg (Manitoba, Canada).

Observation on the Metamorphosis of Larvae of Ascidia malaca in Sea Water Devoid of SO4 Ions

Previous investigations carried out on embryos of Ascidiaceae (Ciona intestinalis L., Ascidia malaca and Phallusia mamillata) allowed to develop in sea water devoid of SO₄ ions led to the development of larvae with marked abnormalities solely affecting the tails which were shorter than normal and exhibited anomalous muscle cells¹. Subsequent cytochemical and autoradiographic studies led to the conclusion that the anomalies seen in the muscle cells of the tails were probably the consequence of a disorder of protein synthesis²-⁴.

Preliminary studies carried out after metamorphosis had revealed changes of the morphogenesis of the adhesive papillae in *Ascidia malaca*⁵. In the present article, a report is given of the results of further experiments carried out during and after metamorphosis in embryos of *A. malaca*.

The embryos were allowed to develop in ordinary sea water, artificial sea water and SO_4^2 -free sea water, using the methods previously described 1; some of the embryos were photographed in vivo. In one experiment, groups of larvae developed in normal sea water or in artificial sea water to which 25 μ C of $^{35}SO_4$ was added $^{10}-12$ h after hatching; after 30 min, these larvae were washed repeatedly in sea water and were then treated with Nile

- ¹ G. Materazzi and L. Vitaioli, Experientia 22, 435 (1966).
- ² G. MATERAZZI and L. VITAIOLI, Boll. Soc. It. Biol. Sper. 43, 1917 (1967a).
- ³ G. Materazzi and L. Vitaioli, Atti Soc. Peloritana Sc. fis. mat. nat. 13, 125 (1967b).
- ⁴ G. Materazzi, Acta embryol. morphol. exper. 10, 101 (1967).
- ⁵ G. Materazzi, Boll. Zool., in press (1968).

blue by the method of Numakunai, Ishikawa and Hirai⁶ to accelerate metamorphosis. 3 h after the addition of Nile blue the larvae were fixed, some in Bouin's fluid, others in Zenker formol. Sections of larvae fixed in Bouin's fluid and imbedded in paraffin were then subjected to autoradiographic tests, using Kodak NTB 2 emulsion⁷.

Other sections of larvae fixed in Zenker were subjected to the following tests for mucopolysaccharides: PAS; alcian blue-PAS8; toluidine blue buffered to graduated pH values with a constant dilution of 1:5000; high iron diamine-alcian blue 9. (a) The control embryos exhibited normal metamorphosis, with absorption of the tail and appearance in the trunk region of the adhesive papillae (Figure 1). The embryos treated with Nile blue showed greatly accelerated metamorphosis, in agreement with the observations of Numakunai et al.6. (b) The embryos developed in sulphate-free sea water showed rather irregular and incomplete absorption of the tail; the adhesive papillae at the trunk failed to develop (Figure 2). (c) The cytochemical tests for mucopolysaccharides in normal larvae gave positive results with alcian blue, with toluidine blue and with the high iron diamine-alcian blue test in the testal membrane and the adhesive papillae, supporting the contention that these structures contain sulphated acid mucopolysaccharides as well as sialomucins.

The uptake of ³⁵SO₄ was particularly marked only in the adhesive papillae (Figure 3).

The findings show that in the course of the metamorphosis of Ascidia malaca, absence of $SO_{\overline{4}}$ ions leads to arrest of the metamorphosis of such structures as the adhesive papillae (which normally become differentiated in the trunk during this period), the absence of this ion also leading to disorders of the normal absorption of the structures of the tail.

The results of the above-mentioned cytochemical and autoradiographic tests (which revealed the presence of sulphated acid mucopolysaccharides in the adhesive papillae) and the results of earlier studies, which revealed a disorder of the uptake of H³-phenylalanine in larvae allowed to develop in sea water devoid of $SO_{\overline{4}}^{\overline{4}}$ ions⁴, suggest that the above abnormalities observed during the metamorphosis may be due to a disorder of metabolism of the sulphated acid mucopolysaccharides and of protein synthesis.

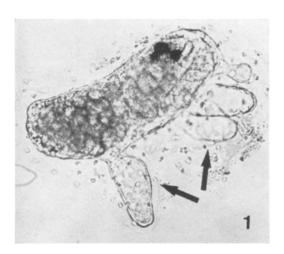


Fig. 1. Ascidia malaca. Larva developed in artificial sea water, after metamorphosis and photographed in vivo. The presence of adhesive papillae on the trunk, indicated by arrows, can be observed. \times 120.

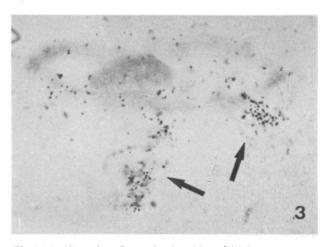


Fig. 3. Ascidia malaca. Larva developed in artificial sea water after metamorphosis. $^{85}\mathrm{SO}_4$. Bouin. Autoradiography. An elective incorporation in the adhesive papillae on the trunk, indicated by arrows, can be seen. \times 280.

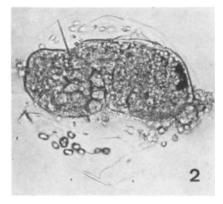


Fig. 2. Ascidia malaca. Larva developed in artificial sea water devoid of SO_4^{-} ions, after metamorphosis and photographed in vivo. Same stage as larva in Figure 1. No differentiation of adhesive papillae on the trunk. \times 120.

Riassunto. Viene condotto uno studio su larve di Ascidia malaca durante la metamorfosi in acqua di mare priva di ioni SO₄. Si riscontra arresto del differenziamento delle papille adesive presenti nel tronco.

G. Materazzi¹⁰, A. M. Bondi and L. Vitaioli

Naples Zoological Station,

II Chair of Histology and Embryology, University of Naples and Institute of Anatomy and Histology, University of Camerino (Italy), 14 March 1969.

- ⁶ T. Numakunai, M. Ishikawa and E. Hirai, Bull. of the marine
- ⁷ B. M. KOPRIWA and C. P. LEBLOND, J. Histochem. Cytochem. 10, 269 (1962).
- ⁸ R. W. Mowry, J. Histochem. Cytochem. 4, 407 (1956).
- ⁹ S. S. Spicer, J. Histochem. Cytochem. 13, 211 (1965).

biol. Station of Asamushi 12, 161 (1965).

10 Present address: Director of the Institute of Anatomy and Histology, University of Camerino, Italy.